GuRu

An Ecosystem of Wireless Power

Feb 5th 2020

Wireless Power at a Distance: Nothing Like It

- Create a truly unplugged world
- Wireless power anywhere and anytime
- Always-on power, or charge in background
- Smaller battery or battery-less devices

GuRu's proprietary *RF Lensing* Technology

Power transfer through **focused millimeter wave** beams

Multiple watts over multiple meters to multiple devices

Dynamically finds devices and focuses the energy on them

Fundamentally different physics from contact wireless charging (Qi)

GuRu's current systems

RF Lensing – How it works?

- RF energy can be <u>confined</u> in conical mm-wave beam
- RF energy is absorbed (used) at the receiver

Simulated power density close to transmit aperture

Simulated power density at receiver

RF Lensing – What it means

- Localization means <u>safety</u>
 - Very little RF energy is transmitted elsewhere
- Localization also results in higher transfer efficiency (next slide)

Free-Space Transfer Efficiency (Example)

- Assumptions:
 - TX (GU) size : 40cm x 40cm
 - RX (RU) size : 5cm x 10cm
- Efficiency limited by *Diffraction*
- Shown are best-case scenarios without use of concave (focusing) mirrors or dielectric lenses

Power spot size versus distance for different operating frequencies

Volumetric Confinement of RF power

Compare two systems:

$$\lambda = 1.25$$
cm

End of Slideshow

